Paraganglioma: Difference between revisions

From OtoWiki
Jump to navigation Jump to search
mNo edit summary
Line 39: Line 39:


=== Histology ===
=== Histology ===
There are two predominant cell types seen on histologic sections of paragangliomas.  
There are two predominant cell types seen on histologic sections of paragangliomas. Type I cells, also known as Glomus Cells, are comprised of secretory cells and make up a majority of the bulk of paragangliomas. Type I cells will stain positive for neuroendocrine markers such as chromogranin, synaptophysin, neuron-specific enolase (NSE), and CD56. Type II cells, also known as Sustentacular Cells, is comprised of Schwann-like satellite cells. Type II cells stain positive for S100 and occasionally glial fibrillary acidic protein (GFAP). Paragangliomas will arrange themselves in the same histologic morphology as normal paraganglia tissue, in what is described as the ''Zellballen'' configuration - an arrangement of clusters of Type I cells in a surrounding stroma of Type II cells.


<gallery>
<gallery>

Revision as of 18:44, 15 September 2024


Overview

Paragangliomas are masses derived from the paraganglia, a group of non-neuronal cells that are associated with the sympathetic and parasympathetic nervous system.

History

These tumors historically were called "glomus tumors" when present in the head and neck. This term has fallen out of use due to potential confusion with other structures with similar names, such as glomus bodies.

Pathophysiology

Relevant Anatomy

The term "paraganglia" refers to a group of non-neuronal neuroendocrine cells derived embryologically from neural crest cells. There are paraganglia associated with the sympathetic nervous system comprised of chromaffin cells, and those associated with the parasympathetic nervous system comprised of glomus cells. The adrenal medulla is the largest collection of Chromaffin cells in the body. The paraganglia of the head and neck region are associated with the glomus cells of the parasympathetic nervous system.

The paraganglia are highly vascularized for the purposes of chemoreceptor sensitivity. Sympathetic paraganglia act as endocrine organs with systemic catecholamine release (such as the adrenal medulla, organ of Zuckerkandl, etc.). These paraganglia are a major source of catecholamines in early embryogenesis (assuming much function of the adrenal medulla). Parasympathetic paraganglia predominantly have more local effects on nerve endings, such as in the carotid body.

Disease Etiology

Epidemiology

The incidence of head and neck paragangliomas has been reported as 1 in 30,000 to 1 in 100,000. Approximately 10% of patients with head and neck paragangliomas will have multiple masses. As many as 25-35% of cases have been linked to hereditary conditions, typically Familial Paraganglioma Syndrome (see Genetics section below). There is an equal distribution of carotid paragangliomas in men and women, but jugulotympanic paragangliomas are six times more likely to be in women.

Genetics

Histology

There are two predominant cell types seen on histologic sections of paragangliomas. Type I cells, also known as Glomus Cells, are comprised of secretory cells and make up a majority of the bulk of paragangliomas. Type I cells will stain positive for neuroendocrine markers such as chromogranin, synaptophysin, neuron-specific enolase (NSE), and CD56. Type II cells, also known as Sustentacular Cells, is comprised of Schwann-like satellite cells. Type II cells stain positive for S100 and occasionally glial fibrillary acidic protein (GFAP). Paragangliomas will arrange themselves in the same histologic morphology as normal paraganglia tissue, in what is described as the Zellballen configuration - an arrangement of clusters of Type I cells in a surrounding stroma of Type II cells.

Diagnosis

Patient History

Most patients present for evaluation in their 40s or 50s.

Physical Examination

Laboratory Tests

Imaging

Differential Diagnosis

Patients with paragangliomas, particularly in the jugulotympanic distribution, can present with the various eponymous jugular foramen syndromes:

Cranial Nerve Involvement in Skull Base Masses
Syndrome CN IX CN X CN XI CN XII Sympathetics
Vernet Syndrome
Collet-Sicard Syndrome
Villaret Syndrome
Tapia Syndrome ± ±
Jackson Syndrome
Schmidt Syndrome

In addition, the following diagnoses should be considered:

  • Schwannoma
  • Arterio-Venous Malformation
  • Metastatic Malignancy

Management

Medical Management

Surgical Management

Outcomes

Complications

Prognosis

References